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ABSTRACT
Self-driving cars are on the horizon, making it necessary to consider safety assur-
ance and homologation of these autonomously operating vehicles. In this study, we
systematically review literature that proposes new methods for these areas. The
available methods were categorized into a novel taxonomy, dividing them into the
strategies of combinatorial testing, robustness testing and search-based testing. We
analyzed the literature in regard to modeling capabilities, targeted automation sub-
system, targeted driving task level and the metrics used for criticality evaluation and
coverage of the scenario space. We found that there are significant differences and
shortcoming in the modeling capabilities of the existing research and that methods
of each strategy usually target a specific driving task level. Additionally the criti-
cality assessment of scenario-based validation methods was examined, revealing the
need for more comprehensive metrics to assess complex scenarios. The developed
taxonomy furthers the understanding in different scenario-based testing approaches
for automated vehicles and serves as a guide for future research.

KEYWORDS
taxonomy; scenario based testing; highly automated driving; test case generation;
intelligent transportation systems

1. Introduction

Automated vehicles (AVs) of SAE level 3 and higher (SAE, 2018) offer the potential
to significantly reduce accident rates, traffic congestion and greenhouse gas emissions
(Brown, Gonder, & Repac, 2014; Greenblatt & Saxena, 2015; Ross & Guhathakurta,
2017; Tsugawa & Kato, 2010). Ensuring that AVs are safe in every situation remains an
open problem, as the automation in an unrestricted environment introduces a number
of challenges.

Most research has been directed towards the development of automated systems,
fuelled by the emergence of new players from the technology industry. Recent accidents
involving vehicles with different levels of automation show however, that the technol-
ogy is not yet infallible and fails in ordinary highway-driving scenarios, which could
easily be handled by a vigilant human driver (Duarte & Ratti, 2018). Furthermore, in-
cidents regarding AVs in public tests could potentially lead to distrust and a generally
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dismissive attitude by the public, which could significantly impede a contemporary
introduction (T. Zhang et al., 2019).

While the electronic stability control (ESC), which is mandatory in all new vehicles,
is validated through a single sine-with-dwell test (NHTSA, 2007), the same techniques
cannot be used for AVs as they have to operate through a much wider variety of
scenarios. Statistical assessments in studies by Watzenig and Horn (2017) and Kalra
and Paddock (2016) estimate the necessary test drive distance to validate that AVs
are better than current human drivers in the magnitude of 106 to 109 kilometers.
These estimates can be compared to the total annual road traffic in Germany which
amounted to 757 billion kilometers in 2015 (ADAC, 2016). With the cost for real
world testing estimated by Wachenfeld (2017) at 2.65 Euro per kilometer, the testing
expenditures would exceed economic justification.

Furthermore, the emergence of rules to guide the development and introduction
of automated vehicles, although necessary, adds further complexity to the topic, as
most governments have released guidelines or code of practices for automated vehicle
development and testing. An ethics commission appointed by the German government
for example proposes a pool of scenarios, controlled by the government, from where the
software is tested (Di Fabio et al., 2017). Several countries such as the United Kingdom,
Germany, China and several states in the United States have additionally introduced
legislation and code of practices to allow for testing of AVs on public roads, where they
can encounter realistic traffic scenarios. All legislation requires a driver being ready
and able to take over control of the vehicle if necessary, but especially the British code
of practice for automated vehicle trialing (Department for Transport, 2019) and the
California code of regulations on testing of autonomous vehicles (Department of Motor
Vehicles, 2018) do not necessarily require the safety driver to be within the vehicle.

It is not viable, to include all possible circumstances that an automated vehicle
might encounter in a fixed set of scenarios, as the amount of scenarios an automated
vehicle could encounter is indefinite (Schuldt, Saust, Lichte, Maurer, & Scholz, 2013).
This entails that an automated vehicle’s software code cannot include all these sce-
narios in hard code. On the other hand, all the scenarios still have to be accounted for
in the validation (Koenig, Gutbrod, Hohmann, & Ludwig, 2017).

The recent emergence of machine learning algorithms, and their end-to-end use
in automated vehicles increases the validation problem. These enhanced vehicles are
able to outsmart predefined tests, similar to the events in the recent diesel emissions
scandal, where vehicles could identify when they were driven on a test bench, instead
of the road (Zhao, 2016). New ways to test AVs which deploy machine learning are
therefore indispensable.

Findings can also be transferred from other fields in robotics, like unmanned under-
water vehicles (UUV) (Mullins, Stankiewicz, Hawthorne, & Gupta, 2018), or aerospace
and aviation (Calefato, Ferrarini, Kutila, & Landini, 2015). Furthermore, combina-
tions of different software testing methods could yield valuable research which could
be transferred onto the AV validation problem (Anand et al., 2013).

Research effort in the area of AV validation has gained traction, introducing various
methods to validate AVs. In this paper, we introduce a novel taxonomy of how virtual
validation methods for AVs can be differentiated. This aids researchers to identify
gaps in existing research. The validation methods are allocated to three overarching
strategies by identifying similarities in the underlying theories of the methods. The
main difference from previous taxonomies like Stellet et al. (2015) is the focus on
virtual validation strategies, which are indispensable for the validation of AVs.

We selected published research found through keyword searches of IEEE and Scopus
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databases, as well as publications from key authors and institutions for our review.
As initial keywords we used “scenario-based testing”, “validation” and “autonomous
vehicles”, scanning the reference sections of found papers for further relevant literature.
We limited our review to literature from the past 25 years.

The remainder of this section lays out a summary of terminology commonly used
in literature, pointing out overlaps and redundancies. Section 2 describes the valida-
tion methods that are typically used in vehicle validation and where virtual validation
methods are integrated in the overall validation process. In Section 3 we describe the
proposed overarching virtual validation strategies and their use in automated vehicle
validation. In Section 4 we discuss the findings from the literature analysis and high-
light gaps in the existing research. Finally, in Section 5 we summarize the proposed
taxonomy. Additionally a tabular overview over the covered literature and its analysis
is appended.

1.1. Terminology

In order to provide a common basis of discussion and make the understanding of our
work easier, we start by setting out the terminology we use in this paper. We point out
how terminology is used in existing research, but the definitions given in this paper
are not definitive and will certainly evolve as the only recently emerging field of AV
validation evolves.

1.1.1. Scenario, Situation, Scene

A commonly used classification for the terms scenario, situation and scene has been
elaborated by Geyer et al. (2014) and was improved by Ulbrich, Menzel, Reschka,
Schuldt, and Maurer (2015): A scene is therein defined as a snapshot of the spatial
layout of the vehicle and its environment, without any temporal attributes. Further-
more, a situation is derived from a scene to include mission-specific goals and values.
It is therefore always from the ego vehicle’s point of view. Finally the scenario includes
the temporal aspect, by combining several scenes to a progression.

A more detailed classification of the term scenario is presented by Menzel, Bagschik,
and Maurer (2018). To facilitate the use of scenarios alongside the development process
according to ISO-26262, they differentiate the scenario description into functional,
logical and concrete scenarios. The functional scenario is described in natural language
for use in the concept phase. The logical scenario describes parameter spaces within the
state space for all necessary parameters, while the concrete scenario details a specific
set of parameters with concrete values for each parameter. The logical and concrete
scenario description is used in the development and testing phase respectively.

The terminology for scene, situation and scenario by Ulbrich et al. (2015) is adopted
in this paper, making use of the finer distinction by Menzel et al. (2018) whenever
necessary.

Note that the term maneuver is sometimes used (Nagel, Enkelmann, & Struck,
1995; Najm, Smith, & Yanagisawa, 2007; Waymo, 2017), and is analogous to the term
situation. However, since the definitions are similar to that of situation, we will not be
using it in this paper.

Furthermore the actors and general setting of a scenario need to be described:
The term ego vehicle or ego describes the vehicle that is being examined or observed in
the scenario, usually the AV. It is sometimes also referred to as the system-under-test
(SUT).
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Dynamic objects describe all objects other than the ego vehicle, that change their
state over the course of the scenario. These are for example other vehicles, pedestrians
or objects like traffic signals. Static objects are objects that are stationary and do not
change its state during the scenario, for example traffic signs, trees and buildings.

The environment describes the road layout and lane network with the lane mark-
ings for example. Additionally it describes environmental states, such as lighting and
weather conditions (i.e. rain, snow, fog, etc.).

1.1.2. Edge, Boundary or Corner Case Scenario

When scenarios are used in the domain of testing, further differentiation is used to
separate different types of scenarios.

Current literature uses a variety of different terms to describe test scenarios that
have the potential to be safety critical for an AV, such as edge, boundary or corner
case scenarios. 9 out of the 47 papers considered in this review mention one or more
of the three designations for scenarios, but no definition is given (Galko, Rossi, &
Savatier, 2014; Hutchison et al., 2018; Khastgir et al., 2017; Koopman & Wagner, 2016;
D. R. Kuhn, Kacker, & Lei, 2010; Mullins et al., 2018; Nie & Leung, 2011; Tuncali,
Fainekos, Ito, & Kapinski, 2018; Tuncali, Pavlic, & Fainekos, 2016). Generally the
terms describe a test scenario where the outcome is on the boundary between safe and
unsafe, according to the used metric to assess the safety. These scenarios are especially
interesting for AV validation, as a small change in one parameter might result in the
scenario becoming unsafe.

The term boundary case scenario should not be confused with boundary value
analysis, where a systems is analyzed with parameters at their maximum or minimum
value. An edge, boundary or corner case scenario can, but does not necessarily require
one or multiple operating parameters at their maximum or minimum values.

1.1.3. Rare Event

Another term often used in research regarding scenario-based validation is the term
rare event. From the 47 papers considered in this review, 11 refer to rare events (Gi-
etelink, 2007; Gietelink, De Schutter, & Verhaegen, 2005, 2006; Huang, Lam, & Zhao,
2017; Hutchison et al., 2018; Koopman & Wagner, 2016; Shortle & L’Ecuyer, 2011;
Zhao, 2016; Zhao, Huang, Peng, Lam, & LeBlanc, 2018; Zhao et al., 2017; Zlocki,
Eckstein, & Fahrenkrog, 2015).

According to Lagnoux (2006), a rare event is defined by a very low probability of
occurrence, between 10−9 and 10−12. The probability threshold to classify an event
as rare varies from discipline to discipline. If we take a traffic accident with personal
injury as a rare event, we can construct the following (frequentist) deduction from ac-
cident statistics (Zlocki et al., 2015): In 2015, 305,659 accidents with personal damage
occurred in Germany, on a total driven mileage of 7.57∗1011 kilometers (ADAC, 2016;
Statistisches Bundesamt (Destatis), 2018). This equals a mean distance in-between ac-
cidents of 2.47 ∗ 106 kilometers or a mean accident occurrence of 4.04 ∗ 10−7 accidents
per kilometer.
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2. Automotive Validation Methods

This section gives an overview over the different validation methods that are used
today. In the automotive context, validation assures that the functionality and safety
during the intended use of the vehicle can be guaranteed. This is traditionally done by
using the staged V-Model validation process as defined in ISO26262 and displayed in
Figure 1. The left side of the V-Model represents the design phase and the right side
the corresponding hardware tests conducted to validate the design. The test methods
range from field operational tests (FOTs), which represent reality as close as possible,
to validation in simulation, where the focus is mainly on the software.

In the following we will describe these test methods in the light of AVs and highlight
published research that falls within the test methods of the classical V-Model, as well
as the emerging methods of scenario-based testing.

2.1. Field Operational Test

FOTs are the most realistic of the validation methods, as they are held with the
prototype vehicle in public or confined areas. The high degree of reality requires more
effort and thus comes at a higher cost. Traditionally manufacturers have therefore
always sought to reduce the amount of testing in FOTs as much as possible.

A methodology for conducting FOT studies is presented by Barnard et al. (2016).
In the past, several large-scale FOT studies have been concluded, for example euro-
FOT which focused on intelligent vehicles systems (Kessler et al., 2012) and DRIVE
C2X focusing on cooperative systems (Schulze et al., 2014). Further studies are Tele-
FOT (Mononen et al., 2013) and FOTsis (Alfonso, Sánchez, Menéndez, & Cacheiro,
2015). A non-exhaustive list of FOTs with objectives around ADAS (Advanced Driver
Assistance Systems) and highly automated driving can be found in Table 1.

Waymo, the self-driving car spin-off of Alphabet Inc., has pursued a FOT-oriented
development and validation. They have been testing automated vehicles since 2009
and amassed up to 16 million kilometers on public roads (Waymo, 2017). Since then
many more demonstrations of autonomous driving in real traffic have been carried
out, for example the fully automated drive by “Bertha”, a prototype Mercedes S-
Class, through urban and rural Germany (Ziegler et al., 2014).

FOT data is often used as initial data set, from which test scenarios are derived
into X-in-the-Loop (XiL) testing or simulation (Zhao, 2016; Zhao et al., 2018, 2017;
Zlocki et al., 2015). Another approach is to run the automated driving functions pas-
sively alongside human drivers in FOTs, thus unable to execute the complete driving
task. This open loop setup allows for a realistic recording of critical scenarios and
a simultaneous evaluation of the automated driving functions (Koenig et al., 2017).
The implementation of this approach is difficult and costly however, as it requires
the deployment of expensive sensory equipment for the sole purpose of recording as
well as a large fleet of vehicles to gather a sufficient amount of data. This approach
is therefore mainly feasible for OEMs on customer vehicles, piggy-backing on existing
sensors. Additionally, it doesn’t give an indication of how an automated driving func-
tion executes after it defers from the human driver’s execution of the driving task, due
to the missing feedback loop.

Field operational test drives in real traffic are the final stage of vehicle validation,
as shown in Figure 1. Due to their high expenditure their use should be reduced as
much as possible, for example with a predominant use of simulation tools and XiL
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Table 1. A Chronology of FOTs Targeting Intelligent Transportation Systems1

Name of the
FOT

Objective Year
Utilized

Vehicles /

Drivers

Covered
Distance

ACAS (Ervin,

2005)

ADAS (CAS,

ACC, FCW)
1999 - 2004 11 / 96 220,480 km

Volvo Intelligent

Vehicle Initiative
(Battelle Memo-

rial Institute,

2007)

ADAS (CAS,

ACC, AEB)
1999 - 2005 100 / >1000 N/A

Road Departure

Crash Warning

(LeBlanc et al.,
2006)

ADAS (LDW) 2001 - 2006 11 / 78 133,575 km

Sky Project V2X, ADAS 2004 - 2009 5200 / 5600 N/A

Assisted Driver
(Alkim et al.,

2007)

ADAS (ACC,
LDW)

2005 - 2006 19 / 19 N/A

IVBSS (Sayer et

al., 2011)
ADAS (CAS) 2005 - 2011 26 / 126 1,311,862 km

AOS (Potters,
2009)

ADAS (ACC,
FCW, LDW)

2007 - 2009 2402 / N/A 77,000,000 km

euroFOT (Kessler

et al., 2012)
ADAS 2008 - 2012 ∼1200 / ∼1200 35,000,000 km

TeleFOT

(Mononen et
al., 2013)

ADAS 2008 - 2012 616 5,613,566 km

Waymo (Waymo,

2017)
AV ongoing since 2009 N/A >16,000,000 km

FOTsis (Nieto et

al., 2015)
V2X 2011 - 2014 N/A N/A

Drive C2X
(Schulze et al.,

2014)
V2X 2011 - 2014 >200 / 750 >1,500,000 km

SPMD (Bezzina &
Sayer, 2015)

V2V 2011 - 2014 115 / N/A >2,735,885 km

Bertha Benz
Memorial Route
(Ziegler et al.,

2014)

AV 2013 1 / 1 103 km

1 CAS: Collision Avoidance System; ACC: Adaptive Cruise Control; FCW: Forward Collison Warning;
AEB: Autonomous Emergency Braking; LDW: Lane Departure Warning, V2X: Vehicle-to-X Communication
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Figure 1. Validation Methods in the V-Model
MiL: Model-in-the-Loop, SiL: Software-in-the-Loop, DiL: Driver-in-the-Loop,

HiL: Hardware-in-the-Loop, ViL: Vehicle-in-the-Loop, FOT: Field Operational Test

methods. Further analysis of FOT based validation is therefore beyond the scope of
this article and can be found in FESTA (2016), which is the result of the FESTA
(Field opErational teSt supporT Action) project.

2.2. X-in-the-Loop Methods

X-in-the-Loop describes a variety of validation techniques, where part of the reality
is abstracted and simulated on a computer. They are often used in early develop-
ment stages to verify and validate the functional requirements of specific components,
when a more realistic validation is not yet possible due to the absence of adequate
prototypes (Feilhauer, Haering, & Wyatt, 2016). Modeling and subsequent simulation
makes these validation methods less representative than FOTs, although being cheaper
to carry out. Due to the use of physical hardware, all XiL methods (except Software-
in-the-Loop (SiL) and Model-in-the-Loop(MiL)) have to be conducted in real-time,
resulting in complications regarding their scalability. The different XiL methods and
their integration in the V-Model are shown in Figure 1.

Vehicle-in-the-Loop (ViL) is the XiL method with the lowest level of abstraction,
as only other traffic participants or objects of interest are simulated (Bock, 2008;
Bock, Maurer, & Farber, 2007; Uberbacher, Wolze, & Burtsche, 2017). If necessary,
surrogate targets can be utilized to recreate safety critical maneuvers (Winner, Hakuli,
Lotz, & Singer, 2016, Chapter 11). That allows for safe and comprehensive testing of
ADAS (advanced driver assistance systems) and highly automated driving features or
scenarios for AVs, with the disadvantage that tests are still setup-intensive.

Interesting approaches in Hardware-in-the-Loop (HiL) validation of ADAS and AVs
are presented by Feilhauer et al. (2016). They propose the injection of virtual data in
different layers of the ADAS architecture, allowing a validation of particular compo-
nents on HiL test benches. Galko et al. (2014) present an example of this methodology,
where generated data is injected into vehicle sensors on a ViL test bench. Both meth-
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ods represent examples of HiL validation that test the robustness of ADAS and AVs.
They will be described in more detail in Section 3.4.1.

A Software-in-the-Loop implementation for ADAS with HiL capabilities is presented
by Zhou, Schmied, Sandalek, Kokal, and del Re (2016), where FOTs are automatically
imported in the simulation software IPG Carmaker to set up an identical scenario in
simulation. Safety critical scenarios can however not be utilized in this method, as they
would require the critical scenario to be carried out in reality. A systematic approach
to allocate test scenarios to the different XiL methods is given by Schuldt, Menzel,
and Maurer (2015).

At this point two additional XiL methods are mentioned for completeness: MiL is
often used in early development stages, to test models without the need to compile
them into the target software.

Driver-in-the-Loop (DiL) systems are colloquially known as driving simulators,
where everything but the human driver and the Human-Machine-Interface (HMI) are
physically realized. DiL focuses on the human driver and can thus be used for takeover
scenarios in ADAS. Their application in AV testing is less significant, as AVs aim at
eliminating the human from preforming the designated driving task. DiL can however
be used to operate other vehicles in the virtual domain and thus evaluate how the AV
interacts with human drivers. Through this the human driver that is “in-the-loop” can
exhibit a wide range of behaviors toward the SUT, from aggressive to defensive.

2.3. Scenario-based Testing

Alongside the described test methods of the traditional V-Model, the principle of
scenario-based testing is emerging for AVs (Menzel et al., 2018). This stems from the
transition of the designated driving task from the human driver to the vehicle. As
the execution of the designated driving task becomes part of the vehicle, according
to ISO26262, this has to be tested in regard to environmental and driving situations.
The high complexity of the environment and the automated system thus leads to
the necessity of AVs being tested based on comprehensive scenarios. As described in
Section 1, the number of scenarios that AVs could possibly encounter is indefinite.
This section presents research that describe scenario-based validation approaches to
manage the scale of this validation problem.

A methodology to generate and organize situations for FOTs is presented by Zlocki
et al. (2015). They propose to populate a database from accident data, FOT data
and staged driving situations. Furthermore, scenarios can then be created via simu-
lation, where automated vehicles are included in the situations and then simulated
stochastically with Monte Carlo simulations (c.f. Section 3.5.1). There are however
two difficulties with this approach: Firstly, basing the database on recorded accident
data will exclude near miss scenarios that did not lead to an accident, but are nonethe-
less highly safety critical. Additionally, the introduction of stochastic into the scenario
generation process leads to a tremendous amount of scenarios, if this process is not
limited and directed towards significant scenarios.

A similar methodology is defined by Alvarez et al. (2017), where a modified situation
is generated from a reference situation to evaluate a specific event of interest, which
they call a target situation. Comparable to Zlocki et al. (2015), these target situations
are extracted from accident databases. Alvarez et al. (2017) use the term situation,
but as this is a subset of the term scenario, their methodology can be extended to
scenarios in general.
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The work presented by Rueger, Sieber, Siegel, Siedersberger, and Faerber (2015)
studied the controllability of a braking-and-evasion scenario through FOTs and val-
idated a ViL simulation with the results. Even though they targeted the interaction
and overruling of an evasion assistance system by the human driver, their work is a
typical scenario-based validation. It demonstrates, that ViL and FOTs are especially
limited by safety aspects however, making scenarios, which are on the boundary of
collision/no collision impossible to test. Simulation methods like MiL and SiL do not
have this limitation, but on the other hand lack in validity as shown in Figure 1.

To overcome this problem, Zofka, Kohlhaas, Schamm, and Zollner (2014) developed
a validation method, where simulation is fused with data from FOTs, increasing the
reliability of pure SiL simulation. Another approach by the same authors, that focuses
on generating scenarios from sensor data for open-loop simulation is presented in Zofka
et al. (2015).

3. Taxonomy of Different Validation Strategies in Simulation-based
Testing

Validation of a system aims at proving that the intended purpose of the system is met
and it is safe to be used by the intended user. This is done by comprehensively testing
the system on whether the actual and intended behaviors deviate from one another.
Similar to validation in the aerospace industry, the validation of highly automated
vehicles has to evaluate the behavior in the event of a failure as well, since undetected
failures can lead to significant financial and personal damages. Currently, validation of
AVs is based on the development of test scenarios, derived from either expert knowl-
edge or empirical data (Stellet et al., 2015). The SAE Level 5, also known as full
driving automation, defines an unlimited operational design domain however, which
leads to an indefinite number of possible scenarios (SAE, 2018). Since most scenarios
of day-to-day driving are uneventful, effort has to be made to automatically generate
challenging scenarios and prove formally that coverage of the intended testing space
is obtained.

The automated generation of test scenarios is only possible in combination with
vehicle simulation, while FOTs, ViL and HiL are indispensable to thereafter validate
these simulations. FOTs, ViL and HiL are limited by their requirement to be run in
real-time, making them impractical for large-scale testing. Their use should therefore
be reserved for a small subset of significant and representative scenarios, which could
be found through simulation and simultaneously validate the simulation.

This section inspects recent literature in the field of simulation-based testing and
identifies three principal strategies to find and prune the amount of scenarios for
validating highly automated vehicles as shown in Figure 2.

3.1. Examined Aspects

This section describes the aspects that were considered to divide the papers into the
previously mentioned virtual validation strategies. The reviewed literature and the
examined aspects are listed in Table 2, at the end of this article. The table is organized
by the type of strategy that the reviewed articles are allocated to, which is indicated in
columns 2 - 6. The order is consistent with the description of the strategies in sections
3.3-3.5.
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Figure 2. Taxonomy of Virtual Validation Strategies
1Automatic Efficient Test Generator

The columns 7 - 10 indicate the scenario modeling capabilities as described in Sec-
tion 1.1.1. Here we considered whether the paper included the ego vehicle, static and
dynamic objects and the environment in the modeling of the scenario.

Columns 11 - 13 indicate the driving task levels the respective method aims at
validating. The three-level hierarchy of the driving task was proposed by Winner
et al. (2016) and consists of the navigation task, the vehicle guidance task and the
vehicle stabilization task. The three tasks are derived from the human behavior while
operating a vehicle and have to be executed by the systems on an AV.

In columns 14 - 17 the subsystems of the AV that is being tested by the respective
method is indicated. To that end, the AV was decomposed into the following functional
subsystems: perception, sensor fusion, decision making and actuation.

The second half of the table lists the features of the particular methods:

• The case studies or examples where the method has been applied and the simu-
lation environment that was used (Column 18).

• Whether the method proposes a general framework for validating AVs, or only
aims at validating specific parameters (Columns 19 and 20).

• Whether the method incorporates a sequential approach, where a scenario can
change over time, or only considers a time invariant, static scenario (Columns
21 and 22).

• The metrics used to evaluate the criticality of the scenario, i.e. the way it is
judged if a scenario outcome is positive or negative (Column 23). This evaluation
is a crucial aspect of scenario-based testing and thus described in more detail in
Section 3.2

• How the effectiveness of the method is measured, i.e. the coverage of the scenario
space. Often this includes comparisons to other methods (Column 24).

• An indication if the publication presents a novel method or a review of previously
described methods (Columns 25 and 26).
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3.2. Criticality Assessment

An essential part of testing is the assessment of the results. In order to compare results
across different validation strategies and methods, it is necessary to use the same
criticality metrics. The assessment metrics here are referred to as criticality metrics
(Sippl, Bock, Wittmann, Altinger, & German, 2016), as the scenario-based validation
is evaluated by how critical a scenario is to either the safety of the ego vehicle, or to
the safety of other traffic participants.

This evaluation can be done manually by examining every test individually, if the
number of conducted validation tests is small. For larger amounts of tests, conducted in
simulation (e.g. MiL, SiL), manual evaluation of the test outcomes becomes unfeasible.
Therefore, the evaluation has to be automated to find safety critical scenarios. These
critical scenarios could then be further investigated through other XiL methods or
FOTs as previously described.

In software engineering the problem of matching the right evaluation to the results
is called the oracle problem and is a big restraint in test automation (Barr, Harman,
McMinn, Shahbaz, & Yoo, 2015). Evaluating the scenario outcome on a binary scale
depending on one parameter is a simple task, for example detecting a collision with a
Boolean value. Using such a basic function might however not be sufficient for evalu-
ating an AV, especially in its interaction with an environment that includes humans
(Stellet et al., 2015). A scenario where a pedestrian is just missed by a few inches
for example, might not flag up as precarious with a function that just distinguishes
between collision/no collision.

The following metrics have been used to assess the criticality of scenarios and can
easily be automated in a simulation setup (de Gelder & Paardekooper, 2017; Koenig
et al., 2017; Roesener et al., 2017; Sippl et al., 2016; van der Horst & Hogema, 1993):

• Time-to-collision (TTC)
• Time-to-brake (TTB)
• Time-headway (THW) or Gap time (GT)
• Post-encroachment-time (PET)
• Proportion of Stopping Distance (PSD)
• Initially-Attempt-Post-Encroachment-Time (IAPET)

Metrics from accident research, which take into account multiple factors have also
been proposed to rate scenarios (Cunto & Saccomanno, 2008; Sobhani, Young, Sarvi,
& Bahrololoom, 2013; Young, Sobhani, Lenné, & Sarvi, 2014). Such metrics include
the crash potential index (CPI) which takes into account the deceleration rate to avoid
a crash and the maximum deceleration rate, and the road safety index (RSI) which is
a function of injury severity score (ISS), traffic volume and number of crashes. Using
the ISS on its own as suggested by Alvarez et al. (2017) is not regarded as expedient,
as it can only be applied once a crash with injury has happened.

Hallerbach, Xia, Eberle, and Koester (2018) suggest to complement TTC and TTB
with a combination of multiple traffic quality metrics, which take microscopic and
macroscopic traffic data like the change of traffic density and velocity fluctuations
into account. Combinations of multiple criticality metrics reduce the amount of false-
positive and false-negative evaluations and should therefore be favored.

A criticality assessment metric with a clear physical interpretation is introduced by
Stellet, Vogt, Schumacher, Branz, and Zollner (2016). They use a collision energy re-
duction metric, which evaluates scenarios based on how the collision energy is reduced.
This metric is however only applicable if a crash is unavoidable and cannot compare
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the criticality of non-crash scenarios to each other.
As Sippl et al. (2016) mention, the TTC or GT based metrics listed above are not

accounting the fact, that dynamic objects in scenarios can alter their path or speed.
Thus they only give valid measurements for the criticality if the conflict is imminent.
Furthermore, none of these safety or criticality metrics take into account how close
proximity passing of dynamic objects, such as pedestrians or cyclists, is accounted for,
since these are often perceived as threatening by the pedestrian/cyclist. The evaluation
of what is perceived as critical by a human is subjective and a universal criticality
metric is therefore difficult, if not impossible to formulate.

3.3. Combinatorial Testing

Combinatorial testing (CT) is a simple, yet effective way for testing software and
systems, sometimes also known as interaction or t-way testing. It has been in practical
use for many years and can be applied for any XiL method. Theoretically CT could
also be used in FOT, but is not practicable due to its large number of test cases.
CT evolved after a number of studies found that failures occur due to the specific
combination of a limited number of parameters, also known as interaction failures
(Anand et al., 2013; D. R. Kuhn et al., 2010; Nie & Leung, 2011; J. Zhang, Zhang, &
Ma, 2014). For example, a large portion of failures can be found by covering all pairs
of parameter combinations for all possible values each parameter can take. This is a
big improvement over exhaustive testing, where every parameter combination is tested
for every possible value. In addition to the described pairwise testing, where all 2-way
combinations are covered, the failure detection can be increased by covering all t-way
combinations, which devolves into exhaustive testing, if t = N , N being the number of
all parameters. A CT for a system with 10 parameters, each with two possible values
would result in only 13 tests to cover all 3-way combinations, compared to 210 = 1024
for exhaustive testing. However, the number of detected failures and the amount of
combinations tested are inversely proportional, thus testing up to 6-way combinations
has shown to be sufficient for a number of hardware and software applications as
can be seen from Figure 3 (D. R. Kuhn et al., 2010). From a computational cost
perspective, the number of t-way tests scale proportional to vtlog(N) with v being
the number of possible values for each parameter (Cohen, Dalal, Fredman, & Patton,
1997; D. R. Kuhn et al., 2010).

3.3.1. Configuration versus Input Parameter Testing

For the application in testing AV scenarios, two forms of CT can be distinguished
(D. R. Kuhn et al., 2010): Examining combinations of scenario configuration param-
eters, such as parameters for environmental setup and static objects of the scenario.
Or combinations of scenario input parameters, which define the dynamic objects of
the scenario. For the testing of automated vehicles based on scenarios, both types
are equally critical, as a failed scenario can emerge from a combination of either a)
a t-way combination of configuration parameters; b) a t-way combination of input
parameters: or c) a t-way combination of configuration and input parameters. This
augments testing effort, as especially the combination of configuration and input pa-
rameters massively increases the necessary number of tests. Thus it has been suggested
to combine and enhance combinatorial testing with other techniques (Nie & Leung,
2011).
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Figure 3. Fault Detections for up to 6-way Interactions in Different Applications after D. Kuhn et al. (2004)

3.3.2. Covering Arrays

Combinatorial tests are usually designed in the form of covering arrays, where each
row represents a single test, containing the set of parameter values represented as
columns (Nie & Leung, 2011). All rows together must contain all t-way combinations
of parameters to form a complete covering array. The construction of covering arrays
has been subject of much research, as it is not a trivial task and was shown to be
non-deterministic polynomial-time (NP) hard in some examples (Anand et al., 2013).
Furthermore, the upper bound grows logarithmically with the number of parameters
(D. R. Kuhn et al., 2010). Covering arrays can be constructed by a wide range of
methods, like One-Test-at-a-Time (e.g. Automatic Efficient Test Generator (AETG)
(Cohen et al., 1997)), In-Parameter-Order (IPO) (Rocklage, Kraft, Karatas, & Seewig,
2017), evolutionary computation (Shiba, Tsuchiya, & Kikuno, 2004), particle swarm
optimization (Mahmoud & Ahmed, 2015) and backtracking search (Rocklage et al.,
2017). Overviews over the algorithms are given in Anand et al. (2013); Colbourn
(2004); Hartman and Raskin (2004); J. Zhang et al. (2014).

Covering arrays have been used to generate scenarios to test automated vehicles in
multiple publications: Rocklage et al. (2017) build on the 4-layer-model proposed by
Schuldt et al. (2013), but use CT for all layers combined. They generate the necessary
covering array for a parametrized merging scenario through non-recursive backtrack-
ing, using a trajectory planner as feasibility checker for the generated trajectories.
While they incorporate weather and lighting conditions, it remains questionable if
their approach can be scaled up for more complex urban scenarios, with a higher
number of traffic participants.

A different use of covering arrays is applied by Tuncali et al. (2018). They use 2-
way covering arrays to generate initial populations of scenarios, from which they then
proceed to find further, more challenging scenarios (cf. Sec. 3.4).

Betts and Petty (2016) use all possible combinations (full combinatorial testing) to
establish ground truth and an upper bound as benchmark for Monte Carlo and search-
based (genetic algorithm) scenario simulation strategies of a UAV, both of which will
be described in subsequent sections (c.f. Sections 3.5.1 and 3.5.3).
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3.3.3. Conclusion of the Combinatorial Testing Strategy

Combinatorial testing achieves good domain coverage, but is prone to combinatorial
explosion as explained in Section 3.3. Mere combinatorial testing for complex auto-
mated driving scenarios is therefore not adequate, but could be incorporated with
other methods to truncate the amount of tests.

From Column 20 of Table 2 it can be seen that all combinatorial testing methods
propose a general framework for testing. The disadvantage of most of the considered
methods is that they can only be used on static scenarios (8 out of the 11 combinato-
rial testing methods considered, Column 21 of Table 2). Only three are able to model
sequential scenarios (Column 22, Table 2). Including sequential scenarios further in-
creases the problem of combinatorial explosion.

Comparing combinatorial testing with random testing (c.f. Section 3.5.1) shows that
the efficiency of failure detection is dependent on the problem size. For scenarios with
a high number of variables, research suggests that random testing achieves a coverage
close to CT, but a 100% coverage is unlikely due to the inherent randomness. Thus if
100% coverage is necessary and the dimensionality of the SUT is fairly low, CT is to
be preferred (D. R. Kuhn et al., 2010).

3.4. Robustness Testing

In software engineering, robustness is defined as the degree to which a system or
component can function correctly in the presence of invalid inputs or stressful envi-
ronmental conditions (ISO/IEC/IEEE 24765:2010(E), 2010). This can be extended to
robustness testing of automotive systems, where invalid or exceptional input values
are used to test the system, in the hope that these lead to increased failure rates. The
failures can then be analyzed to find susceptibilities in the system, e.g. weak spots
that would not have been found with valid inputs. The Ballista testing methodology
was one of the first to follow this assumption (Kropp, Koopman, & Siewiorek, 1998).

Robustness is a key aspect of all AVs, as they are supposed to work in a wide range
of operating conditions, which includes exceptional and unforeseeable rare events. The
function of the automated system should therefore not be fatally impeded by faulty
inputs or failing components (e.g. flat tire, disconnected wire, ECU going offline) as
these are likely to occur at some point.

As can be seen from Table 2, robustness testing is mainly aimed at testing the per-
ception systems of the AVs. This is achieved through adversarial examples and faulty
data, which is injected into the vehicle sensors (c.f. Section 3.4.1). Only Koopman and
Wagner (2016) propose a method for testing the actuation system, and specifically the
stabilization level of the driving task.

A system level approach to robustness testing is described in Section 3.4.2.

3.4.1. Fault Injection

The key method in robustness testing is fault injection (Koopman & Wagner, 2016;
Kropp et al., 1998). Especially with systems of higher complexity, multiple subsystems
can be tested for robustness by injecting faults at different layers, e.g. feeding tampered
or invalid inputs into subsystems. For ADAS and AVs, this has been realized in HiL,
as described in Sec. 2.2. Data can be injected at three different layers of the ADAS/AV
architecture: the sensor channel, the raw data stream and the processed data stream
(Feilhauer et al., 2016). The injected data can of course be modified and enriched with
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faults, thus testing for robustness. The different layers each target a specific subsystem
of the ADAS/AV: injection in the sensor channel layer tests the physical sensors, while
injection in the raw data stream layer targets subsequent data processing algorithms,
like object recognition and motion estimation. Injection of data in the processed data
stream layer tests sensor fusion and behavior generation algorithms like trajectory
planning.

An example for sensor channel data injection is presented by Galko et al. (2014),
where a screen is used to inject a simulated video feed into the camera sensor of a
vehicle running on a ViL test bench. Additionally, their setup allows for an uncom-
plicated addition of weather conditions like rain, by sprinkling water in between the
screen and the camera sensor, thus affecting the perception system.

Another method to test camera sensors regarding their robustness towards rain
is proposed by Hospach, Mueller, Rosenstiel, and Bringmann (2016). Their method
allows to overlay a recorded video feed with simulated rain of variable strength and
thus test the image processing algorithms in a SiL setup.

Robustness has been shown to be especially problematic in modern image recogni-
tion algorithms using Neural Networks (Eykholt et al., 2018; Goodfellow, Shlens, &
Szegedy, 2015). Eykholt et al. (2018) achieved 100% misclassification of a stop sign
using minimal perturbation in form of graffiti-like stickers, fooling the algorithm into
classifying it as a speed limit sign. Adversarial sample generation for machine learning
systems has been extensively studied but is beyond the scope of this paper and will
therefore not be covered.

While fault injection in camera sensors has been widely applied, testing other au-
tomotive sensors like Radar and LiDAR in the same way is more complicated. Radar
HiL data injection is commercially available as a component test bench, but structured
data injection into LiDAR sensors has yet to be achieved. First steps in the direction
of fault injection into LiDAR sensor have been taken by means of crude attacks as
described by Petit, Stottelaar, Feiri, and Kargl (2015) and Shin, Kim, Kwon, and
Kim (2017). It is to be expected that a closed loop LiDAR sensor test bench will be
available in the near future.

Hutchison et al. (2018) propose a methodology to test the robustness of automated
systems based on the previously mentioned Ballista Method. Since many automated
systems are distributed systems consisting of subsystems communicating through a
bus, they approach the testing process by injecting faulty values into bus messages,
thus being the only paper that aims at testing the sensor fusion of an AV (c.f. Column
15, Table 2). The instructions on which values are modified come from a database of
exceptional values, which was build up by the authors empirically through extensive
previous work. This reliance on experience for obtaining the exceptions database,
along with the need for manual test specification which requires significant system
knowledge, makes inferences on test coverage and efficiency difficult however.

3.4.2. System-level Robustness Testing

A system level approach of finding critical scenarios based on a robustness metric is
presented by Tuncali et al. (2018, 2016). In Tuncali et al. (2018) they use a robustness
metric as fitness function for their search algorithm, that follows a combinatorial gen-
eration of scenarios, as described in Sec. 3.3. Aiming to minimize the robustness value,
they anticipate to find scenarios that are on the boundary between success and failure,
so called boundary or edge cases. Examples for such scenarios are critical just-miss
scenarios of other traffic participants or low-speed collisions.
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3.4.3. Conclusion of the Robustness Testing Strategy

10 out of 12 robustness testing methods test for specific parameters (cf. Column 19, Ta-
ble 2). It can therefore be concluded that the robustness testing strategy is mainly used
for single component/parameter tests and when the failure types are roughly known
to the expert conducting the tests. Furthermore, fault injection on its own only aims
at evaluating specific events or failures. It does not provide sufficient means to achieve
comprehensive coverage of the test space, unless it is combined with other strategies.
This is amplified by the need of manual test specification for some robustness metrics,
which requires exceptional knowledge of the SUT.

8 out of the 12 robustness testing methods can be applied to sequential scenarios,
which is better than the limitation to static scenarios that many combinatorial testing
methods have (Column 22, Table 2).

The robustness testing strategy also aims predominantly at testing and validating
the perception system of AVs, as 8 of 12 methods target this AV subsystem (cf. Column
14 of Table 2) and 9 out of 12 methods target the guidance driving task (cf. Column
12, Table 2).

Adversarial perturbation attacks on image recognition algorithms, as shown by
Goodfellow et al. (2015), are far from reality however, and their significance towards
judging the performance in real-life situations is not always given.

3.5. Search-based Testing

Search algorithms are often used in engineering to find an optimal solution to a prob-
lem. The search is guided by either a fitness or objective function, which is either
maximized or minimized (Saeed, Ab Hamid, & Mustafa, 2016). This approach can be
extended to the problem at hand: the search for challenging scenarios, that can be
used to validate automated vehicles. An objective function would then for example
target the maximization of a criticality score, as described in Section 3.2.

Search algorithms aim to explore a predefined search space in order to find a so-
lution that best fits the fitness/objective function. In the following we describe three
search strategies: The exploration can be completely random (c.f. 3.5.1), or preferably
follow a strategy to operate more efficiently and save computation time (c.f. 3.5.2).
Additionally, the application of evolutionary algorithms to find scenarios is described
(c.f. 3.5.3).

3.5.1. Random Search (Monte Carlo Sampling)

Completely random exploration of the search space is usually referred to as Monte
Carlo sampling, or Monte Carlo simulation. In a Monte Carlo simulation, a large
number of similar experiments are carried out, by sampling certain parameters from
a uniform probability density function. According to the law of large numbers, the
relative probability of a random event then stabilizes around the theoretical probability
of said random event. Monte Carlo methods can be used for decision problems as well
as search problems, however the focus in this paper lies on their use to solve the latter.
Due to their long history, Monte Carlo methods have been thoroughly researched and
are commonly applied to problems in vehicle safety analysis (Betts & Petty, 2016;
Gietelink, 2007; Zhao, 2016), as well as in a wide range of other fields, such as physics
and finance. Generally Monte Carlo methods show the following pattern (Althoff &
Mergel, 2011) (see also Figure 4):
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Figure 4. Monte Carlo Scenario Generation

(1) Random seed generation and randomization of inputs and initial states
(2) Simulation of the experiment with the randomly generated inputs and states
(3) After finishing a predetermined (large) number of experiments, the results are

aggregated and evaluated

For the use case of simulating a driving scenario, initial data can either be manually
created or taken from FOTs (de Gelder & Paardekooper, 2017; Zhao, 2016). A Monte
Carlo simulation can be run based on this data, by randomizing the characteristics of
the ego vehicle and other traffic participants (Alvarez et al., 2017). From the results
of such an analysis, the safety of an automated driving system can be estimated, and
conflicts can be detected.

The high dimensionality of automated driving scenarios raises the amount of nec-
essary simulations quickly, making it impractical (de Gelder & Paardekooper, 2017).
The problem is, that the complete randomization also leads to the simulation of many
non-safety-critical, “boring” scenarios, like straight driving on a road without other
traffic participants interacting with the ego vehicle (Zhao, 2016).

Monte Carlo simulations have been proposed to generate scenarios to populate
a database of test scenarios, which can then be used in physical tests (Alvarez et
al., 2017; Zlocki et al., 2015). To prevent the inclusion of non-relevant scenarios, the
scenarios generated through Monte Carlo simulation have to be evaluated regarding
their relevance as described in Section 3.2.

A three level approach to random testing is presented by Khastgir et al. (2017).
Firstly the use case is varied, for example if a highway cut-in situation or an urban
intersection is of interest. Then the test scenario is randomized, which consists of tra-
jectories of the other vehicles and environment conditions. Lastly the initial parameters
of the ego vehicle are randomized. To still achieve sufficient functional coverage of the
parameter space, Khastgir et al. (2017) propose to divide the parameter ranges and
carry out a fixed amount of random simulations in each sub-range instead of ran-
domizing over the entire parameter range. Although this might help to achieve better
coverage of the parameter space, it also increases the amount of necessary simulations
and runs the risk of executing numerous insignificant scenarios.
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3.5.2. Guided Random Search

In recent years, crude Monte Carlo simulation has shown to be outperformed by a
number of more intelligent algorithms (Betts & Petty, 2016; Gietelink, 2007; Zhao,
2016). The general idea is to guide the Monte Carlo simulation in its exploration of
the search space with the use of a priori information. The generation of inputs and
initial states is still randomized, but the sample size is algorithmically reduced. A
number of reduction methods are explained by Gietelink (2007).
A way to increase the efficiency of Monte Carlo simulations is through variance reduc-
tion of the random seed generator. The most widespread method for variance reduction
is importance sampling :

If the probability density function from where the random seeds are sampled is
adjusted, it shifts the simulation to draw more samples from the interesting regions
of the search space (Shortle & L’Ecuyer, 2011). If a uniform distribution is used, this
degenerates to a generic Monte Carlo simulation.

Gietelink et al. (2005, 2006) showed that importance sampling efficiently reduces
the amount of necessary tests compared to a Monte Carlo simulation for an adaptive
cruise control system (ACC).

Other situations that have been evaluated using importance sampling are lane-
change maneuvers (Zhao et al., 2017), and car-following maneuvers (de Gelder &
Paardekooper, 2017; Zhao et al., 2018). The work of Zhao et al. (2018) and de Gelder
and Paardekooper (2017) differs from that of Gietelink et al. (2005, 2006), as they
reconstructed scenarios from big-data N-FOT studies (SPMD; see Table 1), while
Gietelink et al. (2005, 2006) evaluated a universal car-following situation.

Both situations are relatively simple however, as they only include the ego vehicle
and one other vehicle, the lead-vehicle. Although highly critical scenarios can emerge
from the setting with only two actors, it would be interesting how the emergence of
further actors would be handled by the automated system.

White and Cohen (1980) found that failure regions in software tests are contiguous,
which represents essentially a priori knowledge about the SUT. Thus Chen, Kuo,
and Liu (2009); Chen, Kuo, Merkel, and Tse (2010); Chen, Leung, and Mak (2004)
introduced adaptive random testing (ART), to more effectively find faults in software.
In essence ART aims at generating new test cases far away from previous, successful
test cases, in order to reach those failure regions. The generalized approach includes:

(1) Random generation of first input set from uniform distribution
(2) Run tests with this first input set
(3) Random generation of new input set from uniform distribution
(4) Choose input with largest distance from input of last successful test
(5) Run test with new input

This methodology has been adapted to the testing of unmanned underwater vehicles
by Mullins et al. (2018): They propose an algorithm which uses adaptive sampling
to find performance boundary areas, where small changes in initial parameters result
in a transition between performance modes, e.g. from success to failure. Comparable
to the previously described adaptive random testing, this method is founded on the
assumption, that successful and failed scenarios are grouped into contiguous regions.
To find these performance boundaries they sample from a meta-model generated from
the SUT through surrogate optimization. They describe two metrics for generating the
meta-model: Gaussian process regression and k-nearest neighbor density and variance
estimation. Sampling from a surrogate model speeds up the search significantly, as it
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can be executed much quicker than the original SUT. Subsequently they cluster the
cases around the performance boundaries and thus obtain an acceptable number of
interesting boundary cases.

Similarly to Mullins et al. (2018), Huang et al. (2017) use a Kriging-model (a differ-
ent designation for a Gaussian process regression model, stemming from geostatistics)
as a surrogate model for predict the outcomes of a test.

Mullins et al. (2018) use a universal approach to a wide range of automated vehicles
and thus leave the definition of performance modes vague. For automated road vehicles
the performance modes are relatively clear, however, the search could be improved if
these performance modes are estimated beforehand and incorporated in the subsequent
clustering. Furthermore, the method needs to be extended to include additional actors.

A method for testing a collision warning/avoidance system based on an errable
driver model is described by Yang and Peng (2010). The errable driver model was
based on the probability distribution of an undisclosed FOT. Although this results in
a close representation of real driving scenarios, corner cases which are not included in
the underlying naturalistic FOT data, are not accounted for. It is questionable if the
data from human-centered FOTs are valid to serve as underlying distribution to test
the behavior of automated systems.

3.5.3. Evolutionary Algorithms

Evolutionary algorithms are a group of search algorithms inspired by naturalistic evo-
lution in biology and are generally applied to optimization problems. In the domain of
software testing, evolutionary algorithms have widely been used to find software bugs
(Alsmadi, 2010; Anand et al., 2013; Bao et al., 2017; Briand, Labiche, & Shousha,
2005; Mahmoud & Ahmed, 2015; Saeed et al., 2016; Shiba et al., 2004). A subset of
evolutionary algorithms are genetic algorithms which can be used to search for criti-
cal scenarios. To this end, the search is formulated as an optimization problem, with
an appropriate definition of the fitness function of the genetic algorithm. The fitness
function evaluates the test results and thus needs to be defined so that the worst test
results, i.e. the most challenging scenarios, are assigned the highest fitness value.

Genetic algorithms operate according to the following procedure: Firstly, an initial
population of test cases is generated randomly and its members are evaluated by
means of the fitness function. The fittest members are then selected and used to
parent a new generation, which is bred through crossing over the properties of the
parents and subsequent mutation, i.e. randomly changing properties. The operators
for selection, crossover and mutation effectively steer the procedure to find optimal
solutions. The algorithm terminates after reaching a predefined number of generations
or after reaching a specified fitness goal.

The challenge in genetic algorithms is to maintain adequate diversity throughout the
search space. On the one hand, an increased mutation rate would result in a higher
coverage of the search space, but also drastically raises computational effort. If the
mutation rate is too low on the other hand, the chances are higher that the algorithm
converges on a local optimum.

An advantage of genetic algorithms is the possibility to include a-priori knowledge
in the initial population. Previously conducted tests and known failure regions can
thus be incorporated and reduce the necessary simulation effort (Bühler & Wegener,
2004).

Additionally, it was found that genetic algorithms outperform crude Monte Carlo
random search for simple function tests (Betts & Petty, 2016). The study does not
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indicate however, if that holds true for more complex problems like high fidelity auto-
mated vehicle simulations, where, in addition to the high mutation rate, an increase
in independent variables exponentially increases the amount of necessary executions.

Previous work in the aviation industry made use of genetic algorithms for systems
testing. Briand et al. (2005) use them to find cases where the execution of aperiodic
tasks becomes time critical, due to the scheduling algorithm of the function under test.

A search method to find critical scenarios for a pedestrian collision avoidance system
using a genetic algorithm is presented by Abdessalem, Nejati, Briand, and Stifter
(2016). The use of a Neural Network trained surrogate model circumvents the necessity
to execute the simulation in every iteration and thus speeds up the overall process.
This speed-up was benchmarked to a genetic algorithm without the surrogate model
and a Monte Carlo random search, showing significant improvements over both.

An extension was developed by Abdessalem, Nejati, Briand, and Stifter (2018) in
form of a learnable evolutionary algorithm for the evaluation of vision-based systems.
Here decision tree classification models are used to segment the search space into criti-
cal and non-critical regions and apply the evolutionary steps of the genetic algorithms
in these critical regions. This allows for evaluation of a larger search space, but can
be at risk of neglecting small critical regions, not covered in the initial population and
subsequent classification.

Evolutionary algorithms where also used by Bühler and Wegener (2004, 2008) to
evaluate an automated parking system and a braking assistance system, showing a
distinct performance boundary.

3.5.4. Conclusions of the Search-based Testing Strategies

The largest proportion of found literature applied a search-based strategy to finding
scenarios for the validation of AVs (24 methods, c.f. Table 2). While the simplest
approach is the random search (Section 3.5.1), which is often used as baseline compar-
ison, more sophisticated algorithms have been proposed that were classified as guided
random search (Section 3.5.2) and the search with evolutionary algorithms (Section
3.5.3).

The search-based methods usually provide a general framework for evaluating AVs
(23 out of 24 methods, cf. Column 20 of Table 2) and are able to model sequential
scenarios (21 out of 24 methods, cf. Column 22 of Table 2).

While most search-based methods cover the ego vehicle (17 out of 24 methods) and
dynamic objects (15 out of 24 methods) of the scenario, only few model static objects
(3 out of 24 methods) and the environment (6 out of 24 methods) as well (cf. Columns
7-10 of Table 2).

The majority of the search-based testing methods (17 out of 24 methods), aimed at
validating the decision making system of AVs, with none of the methods examining
the actuation and sensor fusion systems (cf. Columns 14-17 of Table 2).

4. Discussion

It was found that none of the methods are able to model all aspects of a scenario (i.e.
Ego Vehicle, Static Objects, Dynamic Objects and Environment; Columns 7 - 10 in
Table 2), while at the same time validating all the subsystems (i.e. Perception, Sensor
Fusion, Decision Making and Actuation; Columns 14 - 17 in Table 2). The validation
is therefore typically targeting one driving task level (i.e. Navigation, Guidance or
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Stabilization; Columns 11 - 13 in Table 2) at a time, with only a few methods testing
on multiple levels.

This reveals a gap in the modeling capabilities of the current virtual validation
methods. In order for a scenario-based simulation to work alongside physical tests
such as XiL and FOTs, more aspects of a scenario need to be modeled. This is neces-
sary to have information on the influence of parameters on the scenarios and inform
subsequent physical tests on which parameters need to be more closely controlled.

The gaps could be addressed by investigating the following research questions:

(1) How could the number of considered scenario parameters be increased, while
keeping the simulation computationally viable?

(2) Is it possible to identify failure regions in the scenario parameter space which
allow us to define corner case scenarios and thus target subsequent testing efforts?

(3) How is it possible to include a systems engineering approach where knowledge
of the components limitations is systematically utilized to accelerate the identi-
fication of critical scenarios?

Furthermore we describe that the current criticality assessment of scenarios has
several shortcomings and define the following gaps:

Current criticality metrics fail to deal with scenarios, where each dynamic object
can alter its path at any point. Most TTC and GT based metrics assume that all the
dynamic objects of a situation continue on their trajectory without alteration and are
therefore only reasonable on a short time frame before a collision.

Another shortcoming is the detection of near miss scenarios. These are crucial to
be detected in a validation as a type of corner case scenario and cannot be detected
by current criticality metrics.

Finally it might be necessary to include a subjective criticality assessment in the
evaluation of AV scenarios, as humans have a subjective feeling of safety, which might
differ from how the current objective measurements are judged.

We define three research questions on the criticality assessment based on these
observations:

(1) How could current criticality metrics be improved to deal with the behavior of
dynamic elements in a scenario?

(2) How could near miss scenarios be included in the detection of critical scenarios?
(3) How could a subjective criticality assessment be related to current objective

criticality metrics?

Future work could therefore be carried out on validation methods that include a
larger number of modeled parameters; searching the scenario space with the help of
statistical methods in order to deal with the combinatorial explosion, while utilizing
a more comprehensive criticality assessment. An examination on where failure regions
in the scenario space are located could inform on what corner case scenarios are and
indicate the influence of different scenario parameters.

5. Conclusions

The contribution of this paper is a survey of the state-of-the-art of the virtual, scenario-
based validation of highly automated vehicles. The validation methods commonly used
during development processes following the V-Model, XiL and FOTs, are detailed and
recent advances for ADAS and AV testing are pointed out.
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Furthermore we present a methodical classification of published validation meth-
ods in three overarching strategies: the combinatorial testing strategy, the robustness
testing strategy and three search-based testing strategies. Table 2 gives a tabular classi-
fication of the covered research in the corresponding strategy classes of this taxonomy.

The taxonomy helps to coordinate the virtual validation effort with XiL and FOTs in
a holistic, scenario-based strategy. To this end we analyzed the modeling capabilities of
the methods, the targeted AV systems (perception, sensor fusion, decision making and
actuation) and the metrics used to evaluate the criticality of a scenario (cf. Section 3.2).
Additionally we looked at how the individual methods measure coverage of the scenario
space, which shows the effectiveness of the methods in dealing with the combinatorial
explosion and allows for comparison between different methods.

We defined a number of research questions to address the gaps we found through
the analysis of the literature.
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